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1 Introduction and Applications

This section is devoted to basic concepts in partial differential equations. We start the
chapter with definitions so that we are all clear when a term like linear partial differential
equation (PDE) or second order PDE is mentioned. After that we give a list of physical
problems that can be modelled as PDEs. An example of each class (parabolic, hyperbolic and
elliptic) will be derived in some detail. Several possible boundary conditions are discussed.

1.1 Basic Concepts and Definitions

Definition 1. A partial differential equation (PDE) is an equation containing partial deriva-
tives of the dependent variable.
For example, the following are PDEs

ug +cu, =0 (1.1.1)
Ugg + Uyy = f(z, y) (1.1.2)
(T, Y) sy + 2y + 327Uy, = 4¢° (1.1.3)
Uptlyy + (uy)® =0 (1.1.4)
(tz)” + Uyy + a(x, y)uz + bz, y)u=0. (1.1.5)
Note: We use subscript to mean differentiation with respect to the variables given, e.g.
ou .
Uy = T In general we may write a PDE as

F(:L‘, Yyomoy Uy Ugy Uy, ~ oy Uggy Ugy, = ° ) =0 (116)

where x, y, - - - are the independent variables and u is the unknown function of these variables.
Of course, we are interested in solving the problem in a certain domain D. A solution is a
function u satisfying (1.1.6). From these many solutions we will select the one satisfying
certain conditions on the boundary of the domain D. For example, the functions

u(r, t) = e

u(z, t) = cos(z — ct)
are solutions of (1.1.1), as can be easily verified. We will see later (section 3.1) that the
general solution of (1.1.1) is any function of x — ct.

Definition 2. The order of a PDE is the order of the highest order derivative in the equation.
For example (1.1.1) is of first order and (1.1.2) - (1.1.5) are of second order.

Definition 3. A PDE is linear if it is linear in the unknown function and all its derivatives
with coefficients depending only on the independent variables.



For example (1.1.1) - (1.1.3) are linear PDEs.

Definition 4. A PDE is nonlinear if it is not linear. A special class of nonlinear PDEs will
be discussed in this book. These are called quasilinear.

Definition 5. A PDE is quasilinear if it is linear in the highest order derivatives with coeffi-
cients depending on the independent variables, the unknown function and its derivatives of
order lower than the order of the equation.
For example (1.1.4) is a quasilinear second order PDE, but (1.1.5) is not.

We shall primarily be concerned with linear second order PDEs which have the general
form

Az, y)uge+B(z, y)ug+C(z, y)uy,+D(z, y)uy,+E(x, y)u,+F(z, y)u=G(z, y) . (1.1.7)

Definition 6. A PDE is called homogeneous if the equation does not contain a term inde-
pendent of the unknown function and its derivatives.

For example, in (1.1.7) if G(z, y) = 0, the equation is homogenous. Otherwise, the PDE is
called inhomogeneous.

Partial differential equations are more complicated than ordinary differential ones. Recall
that in ODEs, we find a particular solution from the general one by finding the values of
arbitrary constants. For PDEs, selecting a particular solution satisfying the supplementary
conditions may be as difficult as finding the general solution. This is because the general
solution of a PDE involves an arbitrary function as can be seen in the next example. Also,
for linear homogeneous ODEs of order n, a linear combination of n linearly independent
solutions is the general solution. This is not true for PDEs, since one has an infinite number
of linearly independent solutions.

Example
Solve the linear second order PDE
ugy(§,m) =0 (1.1.8)
If we integrate this equation with respect to 7, keeping & fixed, we have
ug = f(§)

(Since & is kept fixed, the integration constant may depend on £.)
A second integration yields (upon keeping 7 fixed)

ulg, m) = [ 1(&)dg +Gn)
Note that the integral is a function of &, so the solution of (1.1.8) is
u(€ n) = F(&) +Gn) . (1.1.9)

To obtain a particular solution satisfying some boundary conditions will require the deter-
mination of the two functions F' and G. In ODEs, on the other hand, one requires two
constants. We will see later that (1.1.8) is the one dimensional wave equation describing the
vibration of strings.



Problems

1. Give the order of each of the following PDEs

a.  Ugy + Uyy = 0
b, Uggy + Ugy + a(x)u, +logu = f(z, y)
Co Uggy + Ugyyy + A(T)Ugy + u* = f(z, Y)
Ao U +ul, +e* =0
e. Uy +cuy=d

2. Show that

u(z, t) = cos(x — ct)

is a solution of
Uy +cuy, =0

3. Which of the following PDEs is linear? quasilinear? nonlinear? If it is linear, state
whether it is homogeneous or not.

Ugy + Uy — 2u = 22

Upy = U

Uy + 2 Uy =0

u? +logu = 2zy

Ugpy — 2Ugy + Uyy = COST
(sinug)uy + uy = €”

2Upy — 4Ugy + 2Uy, +3u =0
Ug + Uglly — Ugy = 0

FER e AD o

4. Find the general solution of
Ugy + Uy = 0

(Hint: Let v =u,)

5. Show that y
u= F(zy)+ :UG(;)

is the general solution of

2 2 _
T Ugy — Y Uyy = 0



1.2 Applications

In this section we list several physical applications and the PDE used to model them. See,
for example, Fletcher (1988), Haltiner and Williams (1980), and Pedlosky (1986).
For the heat equation (parabolic, see definition 7 later).

u; = kug, (in one dimension) (1.2.1)

the following applications

1. Conduction of heat in bars and solids

2. Diffusion of concentration of liquid or gaseous substance in physical chemistry

3. Diffusion of neutrons in atomic piles

4. Diffusion of vorticity in viscous fluid flow

5. Telegraphic transmission in cables of low inductance or capacitance

6. Equilization of charge in electromagnetic theory.

7. Long wavelength electromagnetic waves in a highly conducting medium

8. Slow motion in hydrodynamics

9. Evolution of probability distributions in random processes.

Laplace’s equation (elliptic)
Uzg + Uyy =0 (in two dimensions) (1.2.2)

or Poisson’s equation
Uy + Uy = S(z, ) (1.2.3)

is found in the following examples
1. Steady state temperature
2. Steady state electric field (voltage)

3. Inviscid fluid flow

H~

. Gravitational field.

Wave equation (hyperbolic)

Uy — gy = 0 (in one dimension) (1.2.4)

appears in the following applications



1. Linearized supersonic airflow

2. Sound waves in a tube or a pipe

3. Longitudinal vibrations of a bar

4. Torsional oscillations of a rod

5. Vibration of a flexible string

6. Transmission of electricity along an insulated low-resistance cable
7. Long water waves in a straight canal.

Remark: For the rest of this book when we discuss the parabolic PDE
uy = kVu (1.2.5)

we always refer to u as temperature and the equation as the heat equation. The hyperbolic
PDE
uy — A V2u =0 (1.2.6)

will be referred to as the wave equation with u being the displacement from rest. The elliptic
PDE

Viu = Q (1.2.7)

will be referred to as Laplace’s equation (if Q = 0) and as Poisson’s equation (if @@ # 0).
The variable u is the steady state temperature. Of course, the reader may want to think
of any application from the above list. In that case the unknown u should be interpreted
depending on the application chosen.

In the following sections we give details of several applications. The first example leads
to a parabolic one dimensional equation. Here we model the heat conduction in a wire (or a
rod) having a constant cross section. The boundary conditions and their physical meaning
will also be discussed. The second example is a hyperbolic one dimensional wave equation
modelling the vibrations of a string. We close with a three dimensional advection diffusion
equation describing the dissolution of a substance into a liquid or gas. A special case (steady
state diffusion) leads to Laplace’s equation.

1.3 Conduction of Heat in a Rod

Consider a rod of constant cross section A and length L (see Figure 1) oriented in the z
direction.

Let e(z, t) denote the thermal energy density or the amount of thermal energy per unit
volume. Suppose that the lateral surface of the rod is perfectly insulated. Then there is no
thermal energy loss through the lateral surface. The thermal energy may depend on z and ¢
if the bar is not uniformly heated. Consider a slice of thickness Ax between x and = + Ax.
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X+A X L

Figure 1: A rod of constant cross section

If the slice is small enough then the total energy in the slice is the product of thermal energy
density and the volume, i.e.

e(z, t)AAx . (1.3.1)
The rate of change of heat energy is given by
0
a[e(m, t)AAz] . (1.3.2)

Using the conservation law of heat energy, we have that this rate of change per unit time
is equal to the sum of the heat energy generated inside per unit time and the heat energy
flowing across the boundaries per unit time. Let ¢(x, t) be the heat flux (amount of thermal
energy per unit time flowing to the right per unit surface area). Let S(z, t) be the heat
energy per unit volume generated per unit time. Then the conservation law can be written
as follows

%[e(m, t)AAz] = p(x, t)A — o(z + Az, t)A + S(z, t)AAx . (1.3.3)

This equation is only an approximation but it is exact at the limit when the thickness of the
slice Az — 0. Divide by AAx and let Az — 0, we have

%e(m, = im PEFAT D Ze@ D) gy (1.3.4)

AT0 Ax

~
_Op(z,t)
- Oz

We now rewrite the equation using the temperature u(x, t). The thermal energy density
e(zx, t) is given by

e(x, t) = c(z)p(x)u(z, t) (1.3.5)
where ¢() is the specific heat (heat energy to be supplied to a unit mass to raise its tempera-

ture by one degree) and p(x) is the mass density. The heat flux is related to the temperature
via Fourier’s law

ou(z, t)
oz
where K is called the thermal conductivity. Substituting (1.3.5) - (1.3.6) in (1.3.4) we obtain

oz, t)=-K (1.3.6)

c(a:)p(x)% = % (K%) +S. (1.3.7)

For the special case that ¢, p, K are constants we get
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where

K
k= g (1.3.9)

and g
Q=— (1.3.10)

cp

1.4 Boundary Conditions

In solving the above model, we have to specify two boundary conditions and an initial
condition. The initial condition will be the distribution of temperature at time ¢ = 0, i.e.

u(z, 0) = f(z) .
The boundary conditions could be of several types.

1. Prescribed temperature (Dirichlet b.c.)

u(0, t) = p(t)

u(L, t) = q(t) .

2. Insulated boundary (Neumann b.c.)

ou(0,t) 0
on
o . . ) )
where n is the derivative in the direction of the outward normal. Thus at z =0
n
92 __90
on  Ox
and at x = L
9_290
on Oz

(see Figure 2).

X

Figure 2: Outward normal vector at the boundary

This condition means that there is no heat flowing out of the rod at that boundary.



3. Newton’s law of cooling

When a one dimensional wire is in contact at a boundary with a moving fluid or gas,
then there is a heat exchange. This is specified by Newton’s law of cooling

0u(0, t)

_K(0)78x

= —H{u(0, 1) —v(t)}

where H is the heat transfer (convection) coefficient and v(t) is the temperature of the sur-
roundings. We may have to solve a problem with a combination of such boundary conditions.
For example, one end is insulated and the other end is in a fluid to cool it.

4. Periodic boundary conditions

We may be interested in solving the heat equation on a thin circular ring (see figure 3).

x=0 x=L
\

Figure 3: A thin circular ring

If the endpoints of the wire are tightly connected then the temperatures and heat fluxes at
both ends are equal, i.e.

u(0,t) = wu(L,t)
ur(0,t) = wug (L, t).



Problems

1. Suppose the initial temperature of the rod was

| 2z 0<z<1/2
“(‘”’0)_{ 201—12) 1/2<z<1

and the boundary conditions were
u(0,t) =u(l,t) =0,
what would be the behavior of the rod’s temperature for later time?

2. Suppose the rod has a constant internal heat source, so that the equation describing the
heat conduction is
uy = kg, + Q, 0<zr<l1.

Suppose we fix the temperature at the boundaries
u(0,t) = 0
u(l, t) =
What is the steady state temperature of the rod? (Hint: set u; =0 .)

3. Derive the heat equation for a rod with thermal conductivity K(z).

4. Transform the equation

U = k(Ugy + Uyy)
to polar coordinates and specialize the resulting equation to the case where the function «
does NOT depend on 6. (Hint: r = /22 + y?, tanf = y/x)

5. Determine the steady state temperature for a one-dimensional rod with constant thermal
properties and

a. =0, u(0) =1, u(L) =0
b. @ =0, u,(0) =0, u(L) =1
c. Q=0, u(0) =1, uy(L) = ¢
Q_ _
d. = =% u(0) =1, u,(L) =0
e. =0, u(0) =1, Uy (L) +u(L) =0



1.5 A Vibrating String

Suppose we have a tightly stretched string of length L. We imagine that the ends are tied
down in some way (see next section). We describe the motion of the string as a result of
disturbing it from equilibrium at time ¢ = 0, see Figure 4.

)

X axis

0 X L

Figure 4: A string of length L

We assume that the slope of the string is small and thus the horizontal displacement can
be neglected. Consider a small segment of the string between x and x + Ax. The forces
acting on this segment are along the string (tension) and vertical (gravity). Let T'(z, t) be
the tension at the point x at time ¢, if we assume the string is flexible then the tension is in
the direction tangent to the string, see Figure 5.

T(x+dx)

T)

u(x) u(x+dx)

X axis

[o] X x+dx L

Figure 5: The forces acting on a segment of the string

The slope of the string is given by

o u(z+ Az, t) —u(z, t)  Ou
tanf = Al;;rgo o = (1.5.1)

Thus the sum of all vertical forces is:

T(x+ Ax, t)sinf(z + Az, t) — T(x, t)sinf(z, t) + po(x)AzQ(x, t) (1.5.2)

where Q(z, t) is the vertical component of the body force per unit mass and p,(z) is the
density. Using Newton’s law

0*u
F=ma= po(x)Ax@. (1.5.3)
Thus 5
po(x)uy = a[T(x, t)sinf(x, t)] + po(x)Q(z, t) (1.5.4)
For small angles 6,
sin 6 = tan 6 (1.5.5)
Combining (1.5.1) and (1.5.5) with (1.5.4) we obtain
po(x)uy = (T'(x, t)us)e + po(2)Q(z, t) (1.5.6)
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For perfectly elastic strings T'(z, t) & Ty. If the only body force is the gravity then

Qz, t) =~y (1.5.7)

Thus the equation becomes
Uy = Clgy — ¢ (1.5.8)
where ¢ =Ty /po() .
In many situations, the force of gravity is negligible relative to the tensile force and thus we
end up with
Uy = Clgy - (1.5.9)

1.6 Boundary Conditions

If an endpoint of the string is fixed, then the displacement is zero and this can be written as
u(0, 1) =0 (1.6.1)

" u(L, 1) =0. (1.6.2)

We may vary an endpoint in a prescribed way, e.g.
u(0, t) = b(t) . (1.6.3)

A more interesting condition occurs if the end is attached to a dynamical system (see e.g.

Haberman [4])

0u(0, t)
ox

This is known as an elastic boundary condition. If ug(t) = 0, i.e. the equilibrium position
of the system coincides with that of the string, then the condition is homogeneous.
As a special case, the free end boundary condition is

ou
5= 0. (1.6.5)

Tp

=k (u(0, t) — up(t)) . (1.6.4)

Since the problem is second order in time, we need two initial conditions. One usually has
u(z,0) = f()

Ut(aja 0) = g(a:)

i.e. given the displacement and velocity of each segment of the string.

11



Problems
1. Derive the telegraph equation
Uy + aty + bu = gy

by considering the vibration of a string under a damping force proportional to the velocity
and a restoring force proportional to the displacement.

2. Use Kirchoft’s law to show that the current and potential in a wire satisfy

iz +Cuv+Gv = 0

where ¢ = current, v = L = inductance potential, C' = capacitance, G = leakage conduc-
tance, R = resistance,
b. Show how to get the one dimensional wave equations for ¢ and v from the above.

12



1.7 Diffusion in Three Dimensions

Diffusion problems lead to partial differential equations that are similar to those of heat
conduction. Suppose C(zx, y, z, t) denotes the concentration of a substance, i.e. the mass
per unit volume, which is dissolving into a liquid or a gas. For example, pollution in a lake.
The amount of a substance (pollutant) in the given domain V' with boundary T is given by

/VC(x, y, 2, D)dV . (1.7.1)

The law of conservation of mass states that the time rate of change of mass in V' is equal to
the rate at which mass flows into V' minus the rate at which mass flows out of V' plus the
rate at which mass is produced due to sources in V. Let’s assume that there are no internal
sources. Let ¢ be the mass flux vector, then ¢'- 7 gives the mass per unit area per unit time
crossing a surface element with outward unit normal vector 7.

%/Vc*dvz/vaa—fdvz —/Fci’-ﬁds. (1.7.2)

Use Gauss divergence theorem to replace the integral on the boundary

[a-ias = [ divgav. (1.7.3)
r 14
Therefore o

Fick’s law of diffusion relates the flux vector ¢ to the concentration C' by
¢=—DgradC + Cv (1.7.5)

where ¢ is the velocity of the liquid or gas, and D is the diffusion coefficient which may
depend on C. Combining (1.7.4) and (1.7.5) yields

oC

a5 = div (D grad C) — div(C 7). (1.7.6)
If D is constant then 50
5 = DV?*C -V - (C7). (1.7.7)
If ¥ is negligible or zero then
aa—f = DV*C (1.7.8)

which is the same as (1.3.8).
If D is relatively negligible then one has a first order PDE

%—f+6-vc+0div6:0. (1.7.9)
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At steady state (¢ large enough) the concentration C' will no longer depend on ¢. Equation

(1.7.6) becomes
V- (DVC)-V- (C¥) =0 (1.7.10)

and if ¢ is negligible or zero then
V.- (DVC)=0 (1.7.11)

which is Laplace’s equation.
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2 Classification and Characteristics

In this chapter we classify the linear second order PDEs. This will require a discussion of
transformations, characteristic curves and canonical forms. We will show that there are three
types of PDEs and establish that these three cases are in a certain sense typical of what
occurs in the general theory. The type of equation will turn out to be decisive in establishing
the kind of initial and boundary conditions that serve in a natural way to determine a
solution uniquely (see e.g. Garabedian (1964)).

2.1 Physical Classification

Partial differential equations can be classified as equilibrium problems and marching prob-
lems. The first class, equilibrium or steady state problems are also known as elliptic. For
example, Laplace’s or Poisson’s equations are of this class. The marching problems include
both the parabolic and hyperbolic problems, i.e. those whose solution depends on time.

2.2 Classification of Linear Second Order PDEs

Recall that a linear second order PDE in two variables is given by
Augy + Bugy + Cuyy + Duy + Euy + Fu=G (2.2.1)

where all the coefficients A through F' are real functions of the independent variables x, y.
Define a discriminant A(z,y) by

A(zg, yo) = B*(20,%0) — 4A(x0,50)C (20, Yo)- (2.2.2)

(Notice the similarity to the discriminant defined for conic sections.)

Definition 7. An equation is called hyperbolic at the point (g, yo) if A(xg,y0) > 0. It is
parabolic at that point if A(zg,y) = 0 and elliptic if A(zg,yo) < 0.

The classification for equations with more than two independent variables or with higher
order derivatives are more complicated. See Courant and Hilbert [5].

Example.
Uy — gy = 0

A=1,B=0,0=—¢

Therefore,
A=0-4-1(-c) =4 >0
Thus the problem is hyperbolic for ¢ # 0 and parabolic for ¢ = 0.
The transformation leads to the discovery of special loci known as characteristic curves
along which the PDE provides only an incomplete expression for the second derivatives.

Before we discuss transformation to canonical forms, we will motivate the name and explain
why such transformation is useful. The name canonical form is used because this form

15



corresponds to particularly simple choices of the coefficients of the second partial derivatives.
Such transformation will justify why we only discuss the method of solution of three basic
equations (heat equation, wave equation and Laplace’s equation). Sometimes, we can obtain
the solution of a PDE once it is in a canonical form (several examples will be given later in this
chapter). Another reason is that characteristics are useful in solving first order quasilinear
and second order linear hyperbolic PDEs, which will be discussed in the next chapter. (In
fact nonlinear first order PDEs can be solved that way, see for example F. John (1982).)

To transform the equation into a canonical form, we first show how a general transfor-
mation affects equation (2.2.1). Let &, n be twice continuously differentiable functions of
T,y

£ =E&(x,y), (2.2.3)
n=n(z,y). (2.2.4)

Suppose also that the Jacobian J of the transformation defined by

N Ty

is non zero. This assumption is necessary to ensure that one can make the transformation
back to the original variables z, y.

(2.2.5)

Use the chain rule to obtain all the partial derivatives required in (2.2.1). It is easy to see
that
Uy = Uy + UMy (2.2.6)

Uy = Uy + UpNy. (2.2.7)

The second partial derivatives can be obtained as follows:

Ugy = (Ug)y = (Uelo + Upha)y
(uégx)y + (unm‘)y
= (ug)ySe + ueley + (Un)yNe + Uyhay

Now use (2.2.7)
Uy = (Ugely + ugnty)Eo + Ueay + (Uney + UnyTly) Tl + UnNay.-
Reorganize the terms

Ugy = Uge€aly + uén(fxny + §y77:v) + UnnNaTly + Ueay + UnTay- (2.2.8)

In a similar fashion we get ug,, 1y,
Uze = Uggfg + 2ugn€ans + Umﬂ?ﬁ + Ueloa + Unllza- (2.2.9)
Uyy = u§§§§ + 2uen&ymy, + Urm77§ + uelyy + UpTyy- (2.2.10)
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Introducing these into (2.2.1) one finds after collecting like terms
Auge + B ugy + Cuyy + Dug + E*uy + Fru = G” (2.2.11)

where all the coefficients are now functions of &, n and

A* = A&+ B&E, +CE (2.2.12)
B* = 2A&n, + B(&mny + &me) +2CEm, (2.2.13)
C* = Anl+ Bnn,+Cn] (2.2.14)
D* = A&y, + By + C&yy + DE, + EE, (2.2.15)
E* = Ang, + Bngy + Cnyy + Dny + En, (2.2.16)
F* = F (2.2.17)
G* = G. (2.2.18)

The resulting equation (2.2.11) is in the same form as the original one. The type of the
equation (hyperbolic, parabolic or elliptic) will not change under this transformation. The
reason for this is that

A* = (B*)? — 4A*C* = J*(B* — 4AC) = J?A (2.2.19)

and since J # 0, the sign of A* is the same as that of A. Proving (2.2.19) is not complicated

but definitely messy. It is left for the reader as an exercise using a symbolic manipulator
such as MACSYMA or MATHEMATICA.

The classification depends only on the coefficients of the second derivative terms and thus
we write (2.2.1) and (2.2.11) respectively as

Atgy + Bugy + Cuyy = H(z, y, u, Uy, Uy) (2.2.20)

and
A*U§§ + B*ufn + C*uTm = H* (57 mnu, u§7 un)- (2221)
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Problems

1. Classify each of the following as hyperbolic, parabolic or elliptic at every point (x, y) of
the domain

T Ugg + Uyy = z?

T Uy — 20Y Uy + YUy, = €7

€ Uyy + €YUy = u

Uy + Ugy — Ty, =0 in the left half plane (z < 0)
T Uy + 20Y Uy + Y Uy, + YUy + yPu, =0

Ugy + Ty, =0 (Tricomi equation)

o a0 o

2. Classify each of the following constant coefficient equations

gy + SUgy + Uyy + Uy + Uy = 2

Ugg + Ugy + Uyy + Uy =0

gy + 10ugy + 3uy, =0

Ugg + 2Ugy + 3Uyy + duy + duy +u = €*
2Ugy — 4ugy + 2y, +3u =0

Ugg + DUgy + 4ty + Tuy =sinw

o a0 o

3. Use any symbolic manipulator (e.g. MACSYMA or MATHEMATICA) to prove (2.2.19).
This means that a transformation does NOT change the type of the PDE.

18



2.3 Canonical Forms

In this section we discuss canonical forms, which correspond to particularly simple choices of
the coefficients of the second partial derivatives of the unknown. To obtain a canonical form,
we have to transform the PDE which in turn will require the knowledge of characteristic
curves. Three equivalent properties of characteristic curves, each can be used as a definition:
1. Initial data on a characteristic curve cannot be prescribed freely, but must satisfy a
compatibility condition.
2. Discontinuities (of a certain nature) of a solution cannot occur except along characteristics.
3. Characteristics are the only possible “branch lines” of solutions, i.e. lines for which the
same initial value problems may have several solutions.

We now consider specific choices for the functions &, n. This will be done in such a way
that some of the coefficients A*, B*, and C* in (2.2.21) become zero.

2.3.1 Hyperbolic

Note that A*, C* are similar and can be written as
AC? + BGGy + C¢ (2.3.1.1)

in which ( stands for either £ or . Suppose we try to choose &, n such that A* = C* = 0. This
is of course possible only if the equation is hyperbolic. (Recall that A* = (B*)?> —4A*C* and
for this choice A* = (B*)? > 0. Since the type does not change under the transformation,
we must have a hyperbolic PDE.) In order to annihilate A* and C* we have to find ¢ such
that

AC + BG(y + O =0. (2.3.1.2)

Dividing by C;, the above equation becomes

2
A (%) +B (2—2) +C=0. (2.3.1.3)

Along the curve

((x,y) = constant, (2.3.1.4)
we have
d¢ = Cod + Cydy = 0. (2.3.1.5)
Therefore, ; ;
C_z - —% (2.3.1.6)
and equation (2.3.1.3) becomes
A <@>2 % oo (2.3.1.7)
dx dx
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d
This is a quadratic equation for d_y and its roots are
x

dy B+ VB —4AC
dr 2A '

(2.3.1.8)

These equations are called characteristic equations and are ordinary diffential equations
for families of curves in x,y plane along which ( = constant. The solutions are called
characteristic curves. Notice that the discriminant is under the radical in (2.3.1.8) and since
the problem is hyperbolic, B2 — 4AC > 0, there are two distinct characteristic curves. We
can choose one to be &(z,y) and the other n(x,y). Solving the ODEs (2.3.1.8), we get

¢1(z,y) = Ch, (2.3.1.9)

$2(z,y) = Co. (2.3.1.10)
Thus the transformation

§=oi(z,y) (2.3.1.11)

n= ¢2(,y) (2.3.1.12)

will lead to A* = C* = 0 and the canonical form is

B*ugy = H* (2.3.1.13)
or after division by B*
H*
Ugn = - (2.3.1.14)

This is called the first canonical form of the hyperbolic equation.
Sometimes we find another canonical form for hyperbolic PDEs which is obtained by

making a transformation
a=§+7 (2.3.1.15)

B=¢—n. (2.3.1.16)
Using (2.3.1.6)-(2.3.1.8) for this transformation one has

Uaa — UBg = H**(aaﬁauauaauﬁ)- (23117)

This is called the second canonical form of the hyperbolic equation.

Example
YUpy — 7uy,, =0 for x>0,y >0 (2.3.1.18)
A= y2
B=0
C=—2°



The equation is hyperbolic for all x, y of interest.

The characteristic equation

dy 0+ A% 2
W _ Y _ =AY _ .Y (2.3.1.19)
dx 292 2y? y

These equations are separable ODEs and the solutions are

1 1
gV gt =a
1 1
§y2 + 51‘2 = Co

The first is a family of hyperbolas and the second is a family of circles (see figure 6).

Figure 6: The families of characteristics for the hyperbolic example

We take then the following transformation

1 2 1 2
— 2= 92.3.1.2
E= vt - 5u (2:3.1.20)
1 2 1 2
— - - 92.3.1.21
n=gy g (2.3.1.21)

Evaluate all derivatives of £, n necessary for (2.2.6) - (2.2.10)
e=-1, &=y, Ca=-1, &u=0, =1
e =%, My =Y, Nao=1 Noy=0, 1y =1
Substituting all these in the expressions for B*, D*, E* (you can check that A* = C* = 0)
B* = 2y (—x)x + 2(—a2)y - y = —22%y* — 22%y® = —4a%y”.
D* = 2(=1) + (=2?) - 1 = —2® — ¢°.
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E*=y* 1+ (=2%)-1=19>— 2"
Now solve (2.3.1.20) - (2.3.1.21) for z,y
v* =n=¢,
y* =&+,
and substitute in B*, D*, E* we get
—4(n = OE+nuegy + (—n+E =& —nug +(E+n—n+8uy =0

4(& — n?)ugy — 2nue + 2€u, = 0
7 £

Ugy = Ug — u 2.3.1.22
AR R R .
This is the first canonical form of (2.3.1.18).
2.3.2 Parabolic
Since A* =0, B2 — 4AC = 0 and thus
B =+2VAVC. (2.3.2.1)

Clearly we cannot arrange for both A* and C* to be zero, since the characteristic equation
(2.3.1.8) can have only one solution. That means that parabolic equations have only one
characteristic curve. Suppose we choose the solution ¢ (x,y) of (2.3.1.8)

dy B
- =0 (2.3.2.2)
to define
£ =¢r1(x,y). (2.3.2.3)
Therefore A* = 0.
Using (2.3.2.1) we can show that
0= A" = A€+ BLg, +CE
= A€+ 2VAVCOEE, + O (2.3.2.4)

= (\/ng + \/Eé‘y)2

It is also easy to see that

B* = 2A&n, + B(&ny + &ne) +2CEm,
(VAL +VCE&)(VAn, +VCny)

2
= 0
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The last step is a result of (2.3.2.4). Therefore A* = B* = 0. To obtain the canonical form

we must choose a function 7(x,y). This can be taken judiciously as long as we ensure that
the Jacobian is not zero.

The canonical form is then
C* Uy = H*

and after dividing by C* (which cannot be zero) we have

H*
Upp = C+ .

(2.3.2.5)

If we choose n = ¢y(z,y) instead of (2.3.2.3), we will have C* = 0. In this case B* =0
because the last factor v/An, +/C 1y is zero. The canonical form in this case is

H*
Example
TP Uy — 2TYUgy + YUy, = €7 (2.3.2.7)
A=z’
B = -2xy
C =y’

A= (—2zy)* — 427 - y* = d2*y* — 42%y* = 0.
Thus the equation is parabolic for all z,y. The characteristic equation (2.3.2.2) is

dy —2xy y

= = —-Z, 2.3.2.8
dzx 212 T ( )
Solve
dy _ _dax
y oz
Iny+Inz=C

In figure 7 we sketch the family of characteristics for (2.3.2.7). Note that since the problem
is parabolic, there is ONLY one family.
Therefore we can take £ to be this family

E=lny+Inz (2.3.2.9)
and 7 is arbitrary as long as J # 0. We take

n= . (2.3.2.10)
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Figure 7: The family of characteristics for the parabolic example

Computing the necessary derivatives of £, we have

== &= &Gu=—7 &y=0, gyy:_a

x Y x?

771::17 ny:n$$:n$y:nyy:0

Substituting these derivatives in the expressions for C*, D* E* (recall that A* = B* =0 )

C*=2%-1

1 1
D%:ﬁx—ﬁ)—My0+y%—?):—1—1:—2

E*=0.
The equation in the canonical form ( H* = —D*u¢ + G* in this case)
2ug + e
g = 73

Now we must eliminate the old variables. Since x = n we have

2 1 "
Uu = —us + —e'.
nm 772 ¢ ,'72

(2.3.2.11)

Note that a different choice for n will lead to a different right hand side in (2.3.2.11).

2.3.3 Elliptic

This is the case that A < 0 and therefore there are NO real solutions to the characteristic
equation (2.3.1.8). Suppose we solve for the complex valued functions £ and 7. We now

define
&+
o= —
2
]
= 2i

24
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that is @ and (3 are the real and imaginary parts of £. Clearly n is the complex conjugate
of & since the coefficients of the characteristic equation are real. If we use these functions
a(z,y) and f(x,y) we get an equation for which

B* =0, A = O, (2.3.3.3)

To show that (2.3.3.3) is correct, recall that our choice of &, n led to A* = C* = 0. These
are

A* = (Aozi+Bamay—|—C’a§)—(Aﬁi—i—Bﬁmﬂy—i—C’ﬁj)+i[2Aamﬂw+B(amﬁy+ayﬁm)—|—2Cayﬂy] =0

C* = (Aas+Bazay+Cal)—(ABL 4By By +C3)) —i[2Aay B+ B By +ay 8,) +2C o 3,] = 0
Note the similarity of the terms in each bracket to those in (2.3.1.12)-(2.3.1.14)

where the double starred coefficients are given as in (2.3.1.12)-(2.3.1.14) except that «, 3
replace &, correspondingly. These last equations can be satisfied if and only if (2.3.3.3) is
satisfied.

Therefore
A Ugo + A ugs = H™ (o, B, u, U, up)

and the canonical form is
H**

oo + U = (2.3.3.4)
Example
€ Ugy + €YUy = u (2.3.3.5)
A=¢€"
B=0
C =¢Y
A =0? — 4e%e? < 0, for all =,y

The characteristic equation

dy 0++/—4e%ey  +2i\/eTeY w [eY
— = = = M| —
el’

dx 2e” 2e”
dy . dx
m = ilm

Therefore
£ = —2e7Y/? — 24¢7/?

n=—2eY? 4 2ie7%/?
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The real and imaginary parts are:
o= —2eY/? (2.3.3.6)
B =272 (2.3.3.7)

Evaluate all necessary partial derivatives of «, 3

1

— — »—Y/2 — — — —y/2
a, =0, ay=ce /, gy = 0, gy =0, ayy———e/

-z 1 —z
ﬁ:v =€ /27 ﬁy = 07 /81'1' = _56 /27 /Bxy = 07 Byy =0

Now, instead of using both transformations, we recall that (2.3.1.12)-(2.3.1.18) are valid with
a, (3 instead of £, 7. Thus

A*=e"-0+0+¢€Y (e’y/2)2:1

B*"=04+0+0=0 as can be expected
* z [ ,—x/2 2
C*=e (e ) +04+0=1 as can be expected
* 1 —y/2 1 /2
D*=0+0+¢€ <—§e Y > :—gey

1 1
E*=¢" <—§6_x/2> +040= —569”/2
Fr=-1
* * * * 1 /2 1 x/2
H :—Dua—Eug—Fu:§ey ua+§e ug + u.
Thus

1 1
Uga + Ugg = §ey/2ua + §em/2ug + u.

Using (2.3.3.6)-(2.3.3.7) we have

o2 2

B
eyl? — _3

o

and therefore the canonical form is
+ L L + (2.3.3.8)
Uge + Ugg = —— Uy — —1U u. .3.3.
86 o 6 B
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Problems

1. Find the characteristic equation, characteristic curves and obtain a canonical form for
each

T Ugg + Uyy = z?

Ugy + Ugy — TUyy =0 (x <0, all y)

T Uy + 20Y Uy + Y2 Uyy + TYUy + YPu, =0
Ugg + Tlyy = 0

Ugy + yZUyy =Yy

sin? zug, + sin 22Uy + cos? TlUyy =

o a0 o

2. Use Maple to plot the families of characteristic curves for each of the above.
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2.4 Equations with Constant Coefficients

In this case the discriminant is constant and thus the type of the equation is the same
everywhere in the domain. The characteristic equation is easy to integrate.

2.4.1 Hyperbolic

The characteristic equation is

d B+ VA
dy _BEVA (2.4.1.1)
dx 2A
Thus VA
B+ VA
dy = ——d
(Y R
and integration yields two families of straight lines
B+ VA
=y - — 2.4.1.2
=y YR ( )
B—-VA
=y—- —0. 2.4.1.
n=y s ¢ (24.1.3)
Notice that if A =0 then (2.4.1.1) is not valid. In this case we recall that (2.4.1.2) is
By +CC =0 (2.4.1.4)
If we divide by ¢ as before we get
BY 4 =0 (2.4.1.5)
Cy

which is only linear and thus we get only one characteristic family. To overcome this difficulty
we divide (2.4.1.4) by ¢Z to get

G <<>
B=+C[>=] =0 2.4.1.6
GG (2.4.1.6)
which is quadratic. Now
G _ _dx
Ce dy
and so
d_x_ B+vB?2—-4.0-C _BxB
dy 2C 20
ot d dr B
T T
— =0 — = —. 2.4.1.7
The transformation is then
&=z, (2.4.1.8)
B
=z — —y. 2.4.1.9
== 7Y ( )

The canonical form is similar to (2.3.1.14).
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2.4.2 Parabolic
The only solution of (2.4.1.1) is

dy B

de 24

Thus B
E=y— 5% (2.4.2.1)

Again 7 is chosen judiciously but in such a way that the Jacobian of the transformation is
not zero.

Can A be zero in this case? In the parabolic case A = 0 implies B = 0 (since A = B>*—4.0-C
must be zero.) Therefore the original equation is

Cuyy + Duy + Fuy + Fu=G

which is already in canonical form

Uy = ——= Uy — =Uy — =U+ —. (2.4.2.2)

2.4.3 Elliptic

Now we have complex conjugate functions &, 7

_ B+i/-A

E=y VR (2.4.3.1)
B —iv—A
=y - —— . 2.4.3.2
n=y YR (2.4.3.2)
Therefore
_,_ B (2.4.3.3)
@ =y = 5o, 4.3.
VA
= . 2.4.34
5= (243.4)

(Note that —A > 0 and the radical yields a real number.) The canonical form is similar to
(2.3.3.4).

Example
Uy — CUyy = 0 (wave equation) (2.4.3.5)
A=1
B=0
C=-c
A=4c">0 (hyperbolic).
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The characteristic equation is
2
dz 9
_— — C = 0

£ =1x+ct,

and the transformation is
n=x—ct.
The canonical form can be obtained as in the previous examples
gy = 0.
This is exactly the example from Chapter 1 for which we had
u(&,n) = F(§) +G(n).
The solution in terms of x, ¢ is then (use (2.4.3.6)-(2.4.3.7))

u(z,t) = F(z + ct) + G(x — ct).

30
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Problems

1. Find the characteristic equation, characteristic curves and obtain a canonical form for

gy + gy + Uyy + Uy + Uy = 2

Ugg + Ugy + Uyy + Uy =0

gy + 10ugy + 3uyy, =+ 1

Ugg + 2Ugy + 3Uyy + duy + duy +u = €*
2Upy — AUgy + 2Uyy +3u =0

Ugg + DUgy + 4ty + Tuy =sinw

o a0 o

2. Use Maple to plot the families of characteristic curves for each of the above.
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2.5 Linear Systems

In general, linear systems can be written in the form:

ou ou ou
— 4+ A—+ B— =0 2.5.1
or Thar TP, T (2:5.1)
where u is a vector valued function of ¢, x, y.
The system is called hyperbolic at a point (¢, x) if the eigenvalues of A are all real and

distinct. Similarly at a point (¢, y) if the eigenvalues of B are real and distinct.

Example The system of equations

U = CWy (2.5.2)
Wy = Uy (2.5.3)
can be written in matrix form as P P
u u
A= =0 254
ot + or ( )
where
u=[" (2.5.5)
= W 0.
and

_ ( _OC N > (2.5.6)

M- =0 (2.5.7)

or A = ¢, —c. Therefore the system is hyperbolic, which we knew in advance since the system
is the familiar wave equation.

The eigenvalues of A are given by

Example The system of equations

Uy = Uy (2.5.8
Uy = —Uy (2.5.9
can be written in matrix form 5 5
w w
— 4+ A— =0 2.5.10
ox + dy ( )
where
w=|[" (2.5.11)
=1, 5.
and

A= ( (1) _01 ) : (2.5.12)

M4+1=0 (2.5.13)

or A = i, —i. Therefore the system is elliptic. In fact, this system is the same as Laplace’s
equation.

The eigenvalues of A are given by

32



2.6 General Solution

As we mentioned earlier, sometimes we can get the general solution of an equation by trans-
forming it to a canonical form. We have seen one example (namely the wave equation) in

the last section.

Example
T2 Ugy + 2TYUgy + y2uyy = 0.

Show that the canonical form is
Upy = 0 for y #0

Upy = 0 for y = 0.

To solve (2.6.2) we integrate with respect to n twice (£ is fixed) to get

u(&,n) =nkF )+ G(§).

Since the transformation to canonical form is

£ = Y n=uy (arbitrary choice for )

T

then
u(z,y) = yF <g> +d <y> :
x x
Example

Obtain the general solution for

Mgy + DUgy + Uyy + Uy + Uy = 2.

(2.6.1)

(2.6.2)
(2.6.3)

(2.6.4)

(2.6.5)

(2.6.6)

(2.6.7)

(This example is taken from Myint-U and Debnath (19 ).) There is a mistake in their solution

which we have corrected here. The transformation

6 =Yy -z,
g,
77 - y 47
leads to the canonical form 3
Ugn = gun — §
Let v = u,, then (2.6.9) can be written as
1 8
Ug = gU — §

which is a first order linear ODE (assuming 7 is fixed.) Therefore

8
v = 5 + 66/3(15(77)
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Now integrating with respect to n yields

u(E,m) = on+ Gt + F(e). (2.612)

In terms of x,y the solution is

u(z,y) = g <y - 2) +G (y - 2) eV OB L Py —2). (2.6.13)
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Problems

1. Determine the general solution of

Ugy — c%uyy =0 ¢ = constant

gz — SUgy + 2Uyy =0
Ugg + Ugy = 0
Ugg + 10Ugy + uyy =y

/e o oe

2. Transform the following equations to
Uﬁﬂ =cU

by introducing the new variables
U = ye(@&+hn)

where «,  to be determined

A, Ugy — Uyy + Uy — 2uy +u =0
b. 3um+7uxy+2uyy+uy+u—0

(Hint: First obtain a canonical form)

3. Show that )

um:aut—i—bum—zu—i—d

is parabolic for a, b, d constants. Show that the substitution

u(z,t) = v(x,t)e%f”

transforms the equation to
b
VUpe = QU + de 27
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Summary
Equation

Aty + Bugy + Cuyy = —Duy — Euy — Fu+ G = H(x,y, u, Uy, ty)

Discriminant

A(%a yo) = BZ(%: yo) - 4A(5U0; yg)C(xU, yo)
Class

A>0 hyperbolic at the point (xg, yo)
A=0 parabolic at the point (o, yo)

A<O0 elliptic at the point (x¢, yo)
Transformed Equation

Auge + B ugy + C*upyy = —D*ug — E*uy — Fru+ G* = H* (&, 1, u, ug, uy)

where
A* = AE2 + B&E, + C§§
B* = 2A&n; + B(&my + &yne) + 2080,
C* = AnZ + By, + Cn}
D" = A, + Bgmy + Cé‘yy + D&, + Eé‘y
E* = Ang, + By + Cnyy + Dn, + En,
F*=F
G"=(
H* = —D*u¢ — E*uyy — F'u+ G*
dy BxVA haractoristi p
== characteristic equatio
o 54 racteristic equation
H* ) .
ugn = g first canonical form for hyperbolic
H**
Uaa — Ups = T a=+n,=—n second canonical form for hyperbolic
H* ) .
Uge = T a canonical form for parabolic
H* ) .
Upy = o a canonical form for parabolic
H**
Uaa + Usp = a=(E+n)/2,8=(£—mn)/2i  a canonical form for elliptic
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3 Method of Characteristics

In this chapter we will discuss a method to solve first order linear and quasilinear PDEs.
This method is based on finding the characteristic curve of the PDE. We will also show
how to generalize this method for a second order constant coefficients wave equation. The
method of characteristics can be used only for hyperbolic problems which possess the right
number of characteristic families. Recall that for second order parabolic problems we have
only one family of characteristics and for elliptic PDEs no real characteristic curves exist.

3.1 Advection Equation (first order wave equation)

The one dimensional wave equation

*u 0%

can be rewritten as either of the following
0 0 0 0
0 0 0 0
since the mixed derivative terms cancel. If we let
ou ou
_ 27 _ 27 14
ot Cox (3.14)
then (3.1.2) becomes
@ + c@ =0 (3.1.5)
ot or o
Similarly (3.1.3) yields
ow ow
e 1.
5 Cax 0 (3.1.6)
if 9 9
n n
= — —. 1.
w 5 + Casc (3.1.7)

The only difference between (3.1.5) and (3.1.6) is the sign of the second term. We now show
how to solve (3.1.5) which is called the first order wave equation or advection equation (in
Meteorology).

Remark: Although (3.1.4)-(3.1.5) or (3.1.6)-(3.1.7) can be used to solve the one dimensional
second order wave equation (3.1.1) , we will see in section 3.3 another way to solve (3.1.1)
based on the results of Chapter 2.
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To solve (3.1.5) we note that if we consider an observer moving on a curve x(t) then by

the chain rule we get
dv(z(t),t) _Ov  Ovdx

= — . g
i ot " ow dt (3.18)
d
If the observer is moving at a rate d—f = ¢, then by comparing (3.1.8) and (3.1.5) we find
dv
— =0. 3.1.9
o (3.1.9)

Therefore (3.1.5) can be replaced by a set of two ODEs

dz
- = 3.1.10
v (3110
dv
— =0. 3.1.11
o ( )

These 2 ODEs are easy to solve. Integration of (3.1.10) yields
x(t) = x(0) + ct (3.1.12)
and the other one has a solution
v = constant along the curve given in (3.1.12).

The curve (3.1.12) is a straight line. In fact, we have a family of parallel straight lines, called
characteristics, see figure 8.

Figure 8: Characteristics t = 1z — 2z(0)

In order to obtain the general solution of the one dimensional equation (3.1.5) subject to
the initial value

v(2(0),0) = f(=(0)), (3.1.13)



we note that
v = constant along z(t) = x(0) + ct

but that constant is f(z(0)) from (3.1.13). Since z(0) = z(¢) — ct, the general solution is
then
v(z,t) = f(z(t) — ct). (3.1.14)
Let us show that (3.1.14) is the solution. First if we take ¢t = 0, then (3.1.14) reduces to
v(w,0) = f(2(0) = ¢ 0) = f(x(0)).

To check the PDE we require the first partial derivatives of v. Notice that f is a function of
only one variable, i.e. of z — ct. Therefore

Ov df(x—ct)  df dlx—ct) . df
ot dt  dx—ct) dt Td(z—ct)
Ov _df(zx—ct)  df dz—ct) ) df
or  dx  dx—ect) dr  d(x—ct)
Substituting these two derivatives in (3.1.5) we see that the equation is satisfied.
Example 1
ov ov
—+3—=0 3.1.15
o on (3.115)
r 0<x<1
—J 2
v(z,0) = { 0 otherwise. (3.1.16)
The two ODEs are
dr_ g (3.1.17)
dt 7 o
dv
— = 0. 3.1.18
o (3.1.18)
The solution of (3.1.17) is
z(t) = x(0) + 3t (3.1.19)

and the solution of (3.1.18) is
v(z(t),t) = v(x(0),0) = constant. (3.1.20)
Using (3.1.16) the solution is then

o(a(t), 1) = { 2(0) 0<al0) <1

Substituting z(0) from (3.1.19) we have

B (x—=3t) 0<zx—-3t<l1
v(@,t) = { 0 otherwise. (3.1.21)

The interpretation of (3.1.20) is as follows. Given a point x at time ¢, find the characteristic
through this point. Move on the characteristic to find the point 2(0) and then use the initial
value at that z(0) as the solution at (x,t). (Recall that v is constant along a characteristic.)

N[
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Let’s sketch the characteristics through the points z = 0,1 (see (3.1.19) and Figure 9.)

0.5

Figure 9: 2 characteristics for z(0) = 0 and z(0) =1

The initial solution is sketched in figure 10

Figure 10: Solution at time t = 0

This shape is constant along a characteristic, and moving at the rate of 3 units. For

example, the point x = % at time ¢t = 0 will be at x = 3.5 at time ¢ = 1. The solution v will
be exactly the same at both points, namely v = i. The solution at several times is given in
figure 11.

40



=

Figure 11: Solution at several times

Example 2
ou ou
927 — 2z
ot or ¢
u(z,0) = f(x).
The system of ODEs is
du o,
dt
dz
— = -2
dt

Solve (3.1.25) to get the characteristic curve
z(t) = x(0) — 2t.

Substituting the characteristic equation in (3.1.24) yields

d
u 2((0)-21)

i
Thus
du = >4 gt
1
— K — = 2x(0)—4t
u 46
Att=0

and therefore
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Substitute K in (3.1.27) we have

1 1
u(z,t) = f(z(0)) + Z821(0) _ 16%(0)_%'

Now substitute for z(0) from (3.1.26) we get

1 1
u(x,t) = flz+ 2t) + 162(’"“” - Ze“,

or
u(z,t) = f(ov +2t) + iez”“ (e4t — 1) :

(3.1.29)

Note that the first term on the right is the solution of the homogeneous equation and the

second term is a result of the inhomogeneity.

3.1.1 Numerical Solution

Here we discuss a general linear first order hyperbolic

a(z, t)uy + b(z, t)uy = c(z,t)u + d(x,t).

(3.1.1)

Note that since b(x,t) may vanish, we cannot in general divide the equation by b(z,t) to get
it in the same form as we had before. Thus we parametrize x and ¢ in terms of a parameter

s, and instead of taking the curve x(t), we write it as x(s), £(s).
The characteristic equation is now a system

dx

= = alz(s),ts)
z(0) = ¢

dt

5, = bla(s),t(s))
t(0) =0

du

- = clx(s), t(s)u(x(s), 1(5)) + d(x(s), #(s))

u(&,0) = f(&)

(3.1.2)

(3.1.3)
(3.1.4)
(3.1.5)
(3.1.6)
(3.1.7)

This system of ODEs need to be solved numerically. One possibility is the use of Runge-

Kutta method. This idea can also be used for quasilinear hyperbolic PDEs.
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Problems

1. Solve

o _ow
ot or

subject to

w(z,0) =sinx

2. Solve using the method of characteristics

ou  Ou o,

e + o= subject to u(z,0) = f(z)
Z_QZ + x% =1 subject to u(x,0) = f(x)
% + 375% =u subject to u(z,0) = f(z)
g—? - 2% =™ subject to u(z,0) = cosx
% — tZ% = —u  subject to u(x,0) = 3e”

3. Show that the characteristics of

ou ou

— 4+ 2u— =0
o T "a
u(z,0) = f(z)
are straight lines.
4. Consider the problem
ou 49 ou 0
P Uu— =
ot ox
1 x <0
uw(z,0) = f(r)=q¢ 1+ % 0<x<L
2 L<zx

/eooe

Determine equations for the characteristics
Determine the solution u(x,t)

Sketch the characteristic curves.

Sketch the solution u(x,t) for fixed ¢.
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3.2 Quasilinear Equations

The method of characteristics is the only method applicable for quasilinear PDEs. All other
methods such as separation of variables, Green’s functions, Fourier or Laplace transforms
cannot be extended to quasilinear problems.
In this section, we describe the use of the method of characteristics for the solution of
ou

ou
e + c(u, x,t)% = S(u,x,1t) (3.2.1)

u(z,0) = f(x). (3.2.2)

Such problems have applications in gas dynamics or traffic flow.
Equation (3.2.1) can be rewritten as a system of ODEs

dz
= = 2.
o c(u,x,t) (3.2.3)
du
— = . 2.4
W S (3.2.4)

The first equation is the characteristic equation. The solution of this system can be very
complicated since u appears nonlinearly in both. To find the characteristic curve one must
know the solution. Geometrically, the characteristic curve has a slope depending on the
solution u at that point, see figure 12.

t

X0 X

Figure 12: u(x0,0) = f(xo)

The slope of the characteristic curve at z is

. (3.2.5)
c(u(xg),20,0)  ¢(f(xo),20,0) o
Now we can compute the next point on the curve, by using this slope (assuming a slow
change of rate and that the point is close to the previous one). Once we have the point, we
can then solve for v at that point.
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3.2.1 The Case S =0, ¢ = c(u)

The quasilinear equation

ug + c(u)uy =0 (3.2.1.1)
subject to the initial condition
u(z,0) = f(z) (3.2.1.2)
is equivalent to
% = c(u) (3.2.1.3)
z(0) = ¢ (3.2.1.4)
du
i 0 (3.2.1.5)
u(¢,0) = f(&). (3.2.1.6)
Thus
u(z,t) = u(&,0) = f(§) (3.2.1.7)
dx
o = clf(&)
z = tc(f(§)) + & (3.2.1.8)

Solve (3.2.1.8) for £ and substitute in (3.2.1.7) to get the solution.
To check our solution, we compute the first partial derivatives of u

ou _ dudg
ot dé dt
ou _ duds
oxr  dédx’

Differentiating (3.2.1.8) with respect to = and ¢ we have
1=t (f() ()& + &
0= c(f(£)) + 1t (F() ()& + &

correspondingly.
Thus when recalling that Z—z = f'(&)
_ df(9) :
“E TGO’ 3219
1 !
=@’ (32110

Substituting these expressions in (3.2.1.1) results in an identity. The initial condition
(3.2.1.2) is exactly (3.2.1.7).
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Example 3
ou ou

o "on T
u(z,0) = 3z.

The equivalent system of ODEs is

Solving the first one yields

u(z,t) = u(z(0),0) = 32(0).

Substituting this solution in (3.2.1.14)
dz
=2 = 32(0
- = 32(0)
which has a solution
x = 3z(0)t + x(0).

Solve (3.2.1.16) for #(0) and substitute in (3.2.1.15) gives

3z

3t+1

u(z,t) =

3.2.2 Graphical Solution

Graphically, one can obtain the solution as follows:

u(x,0)=f(x)
u

X rte(itg)

(3.2.1.11)
(3.2.1.12)

(3.2.1.13)

(3.2.1.14)

(3.2.1.15)

(3.2.1.16)

(3.2.1.17)

u(x,t)

X
0

Figure 13: Graphical solution

Suppose the initial solution u(z,0) is sketched as in figure 13. We know that each u(x)
stays constant moving at its own constant speed c(u(zg)). At time ¢, it moved from x4 to
xo+te(f(xg)) (horizontal arrow). This process should be carried out to enough points on the
initial curve to get the solution at time t. Note that the lengths of the arrows are different

and depend on c.
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Problems

1. Solve the following

0
a. 8_:: =0 subject to u(z,0) = g(x)
ou .
b. 5 —3zu subject to u(z,0) = g(x)
2. Solve
ou
— =
ot
subject to
u(z,t) =14 cosz along z+2t=0
3. Let
Ou + Ou 0 constant
—+c—= ¢ = constan
ot Ox

a. Solve the equation subject to u(z,0) =sinz
b. If ¢ > 0, determine u(z,t) for x > 0 and ¢t > 0 where

u(z,0) = f(x) forx >0
u(0,t) = g(t) fort >0

4. Solve the following linear equations subject to u(x,0) = f(x)

a. Ou + c% =e ¥
ot ox
ou ou
b. a + t% =5
¢ % — tQ@ =-u
SOt ox
d. % + x% =t
ot ox
ou ou
e. o + xa—x =z

5. Determine the parametric representation of the solution satisfying u(z,0) = f(x),

du  ,0u _
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ou
b. — 4+
o +t7u

6. Solve

subject to

ou
— = —u

or

@ + tzu@ =
ot or

u(z,0) = z.
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3.2.3 Fan-like Characteristics

1
Since the slope of the characteristic, —, depends in general on the solution, one may have
c

characteristic curves intersecting or curves that fan-out. We demonstrate this by the follow-
ing example.

Example 4
U + utly =0 (3.2.3.1)
1 for z<0
u(z,0) = { 9 for x> 0. (3.2.3.2)
The system of ODEs is
dx
- = 3.2.3.3
du
— =0. 3.2.3.4
- ( )
The second ODE satisfies
u(z,t) = u(z(0),0) (3.2.3.5)
and thus the characteristics are
z = u(z(0),0)t + z(0) (3.2.3.6)

or

(3.2.3.7)

Figure 14: The characteristics for Example 4

Let’s sketch those characteristics (Figure 14). If we start with a negative 2(0) we obtain a
straight line with slope 1. If 2(0) is positive, the slope is %
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Since u(z(0), 0) is discontinuous at z(0) = 0, we find there are no characteristics through
t =0, z(0) = 0. In fact,! we imagine that there are infinitely many characteristics with all
possible slopes from % to 1. Since the characteristics fan out from x = ¢ to x = 2t we call
these fan-like characteristics. The solution for ¢ < x < 2¢ will be given by (3.2.3.6) with

z(0) =0, i.e.

T = ut
or
U= for t<z <2t (3.2.3.8)
To summarize the solution is then
1 z2z(00)=2z—-t<0
u=3 2 @(0)=z-2t>0 (3.2.3.9)
n t<x <2t

The sketch of the solution is given in figure 15.

VA

Figure 15: The solution of Example 4

3.2.4 Shock Waves

If the initial solution is discontinuous, but the value to the left is larger than that to the
right, one will see intersecting characteristics.

Example 5
U + g =0 (3.2.4.1)
2 z<1
u(z,0) = { L 2> 1 (3.2.4.2)

Lu =/t is a general solution which only exists for ¢ # 0. This is called rarefaction because it seems like

fanning out from the point of discontinuity (inviscid Burgers’ equation).

20



The solution is as in the previous example, i.e.

z(t) = u(z(0),0)t + z(0) (3.2.4.3)
2t +x(0) ifz(0) <1
2(t) = { t+2(0) if 2(0) > 1. (3:2.4.4)

The sketch of the characteristics is given in figurel®6.

t

Figure 16: Intersecting characteristics

Since there are two characteristics through a point, one cannot tell on which character-
istic to move back to t = 0 to obtain the solution. In other words, at points of intersection
the solution u is multi-valued. This situation happens whenever the speed along the char-
acteristic on the left is larger than the one along the characteristic on the right, and thus
catching up with it. We say in this case to have a shock wave. Let z1(0) < z3(0) be two
points at t = 0, then

za(t) = c(f(22(0))) 1+ 2(0). o
If e¢(f(x1(0))) > e(f(x2(0))) then the characteristics emanating from x;(0), z2(0) will in-
tersect. Suppose the points are close, i.e. x2(0) = x1(0) + Az, then to find the point of
intersection we equate x;(t) = z2(t). Solving this for ¢ yields
—Ax

" @)+ e () + A’ (3249
If we let Az tend to zero, the denominator (after dividing through by Az) tends to the
derivative of ¢, i.e.

1

t= = 3.2.4.7

EHEA)) (3240
dl’l(O)
Since t must be positive at intersection (we measure time from zero), this means that

dc
— < 0. 3.2.4.8
- ( )
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So if the characteristic velocity c is locally decreasing then the characteristics will intersect.
This is more general than the case in the last example where we have a discontinuity in the
initial solution. One can have a continuous initial solution u(z,0) and still get a shock wave.
Note that (3.2.4.7) implies that

dz

which is exactly the denominator in the first partial derivative of u (see (3.2.1.9)-(3.2.1.10)).

Example 6
Uy + ut, =0 (3.2.4.9)
u(z,0) = —zx. (3.2.4.10)
The solution of the ODEs
a7
(3.2.4.11)
dr _
T
is
u(z,t) = u(z(0),0) = —z(0), (3.2.4.12)
z(t) = —z(0)t + 2(0) = z(0)(1 — 7). (3.2.4.13)
Solving for #(0) and substituting in (3.2.4.12) yields
t
u(w, t) = —fL_)t. (3.2.4.14)

This solution is undefined at ¢ = 1. If we use (3.2.4.7) we get exactly the same value for ¢,
since
f(zo) = —x (from (3.2.4.10)

c(f(xg)) = u(xy) = —x (from (3.2.4.9)

In the next figure we sketch the characteristics given by (3.2.4.13). It is clear that all
characteristics intersect at ¢ = 1. The shock wave starts at ¢ = 1. If the initial solution is
discontinuous then the shock wave is formed immediately.

How do we find the shock position z(t) and its speed? To this end, we rewrite the
original equation in conservation law form, i.e.

0

B B
/a uds = %/a udr = —q|”.
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Figure 17: Sketch of the characteristics for Example 6

This is equivalent to the quasilinear equation (3.2.4.9) if ¢(u) = Ju

The terms “conservative form”, “conservation-law form”, “weak form” or “divergence
form” are all equivalent. PDEs having this form have the property that the coefficients of
the derivative term are either constant or, if variable, their derivatives appear nowhere in the
equation. Normally, for PDEs to represent a physical conservation statement, this means
that the divergence of a physical quantity can be identified in the equation. For example,
the conservation form of the one-dimensional heat equation for a substance whose density,

p, specific heat, ¢, and thermal conductivity K, all vary with position is

ou 0 ou
"o " on (Ka—>

whereas a nonconservative form would be
ou OK du N Ka2u
c— = —— —.
P9t = oz ox " 02
In the conservative form, the right hand side can be identified as the negative of the diver-
gence of the heat flux (see Chapter 1).
Consider a discontinuous initial condition, then the equation must be taken in the integral
form (3.2.4.15). We seek a solution u and a curve x = x,(t) across which u may have a jump.
Suppose that the left and right limits are

2

limysau(o- ul@,8) = e (3.2.4.16)
lim, i+ u(2,t) = up o
and define the jump across z4(t) by
[u] = u, — uyp. (3.2.4.17)
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Let [, §] be any interval containing x4(¢) at time t. Then

% /j u(z, t)dr = —[q(u(B, 1)) — q(u(a,1))]. (3.2.4.18)

However the left hand side is

dx, dx,
— Up——. .2.4.1
i g B2419)

B Ts (t)— B
/ udz + udx = / wudx + / udx + uy
dt zs(t)+

zs(t)+ o

Recall the rule to differentiate a definite integral when one of the endpoints depends on the
variable of differentiation, i.e.

B(t) d
dt/ e e = [ il ) + (60, )df

Since u; is bounded in each of the intervals separately, the integrals on the right hand side
of (3.2.4.19) tend to zero as a — x; and  — zJ. Thus

W% = 1)

This gives the characteristic equation for shocks

ds [q]
= —. 3.2.4.20
dt  [u] ( )
Going back to the example (3.2.4.1)-(3.2.4.2) we find from (3.2.4.1) that
1
q = §U2
and from (3.2.4.2)
ug = 2,
u, = 1.
Therefore e 1 )
dr, 1-12-1.22 241 3
dt 1-2 -1 2
zs(0) =1 (where discontinuity starts).
The solution is then 5
z= St L. (3.2.4.21)

We can now sketch this along with the other characteristics in figure 18. Any characteristic
reaching the one given by (3.2.4.21) will stop there. The solution is given in figure 19.
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(= (3/2)t+1

15F

0.5F

Figure 19: Solution of Example 5

95




Problems

1. Consider Burgers’ equation

dp [_2,0]@_ 9?p

- Umaz
ot

Prmaz | OT Vﬁ

Suppose that a solution exists as a density wave moving without change of shape at a velocity

a. What ordinary differential equation is satisfied by f

b. Show that the velocity of wave propagation, V', is the same as the shock velocity
separating p = p; from p = ps (occuring if v = 0).

2. Solve 9 9
P 20p
- L _9
ot P ox
subject to
4 <0
p(a:,())—{ 3 ZL‘>O
3. Solve 9 9
in in
— +4du— =0
o T
subject to

3 z<1
“(x’o):{Q r>1

4. Solve the above equation subject to

2 r<-—1
u(x,()):{g x> —1

5. Solve the quasilinear equation

ou N ou 0

J— u— =

ot ox
subject to

2 x<?2
u(x,O):{3 Tz > 2

6. Solve the quasilinear equation

oo,
ot u@x_
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subject to

u(z,0)=¢ =z 0<z<1
1<z

—_

7. Solve the inviscid Burgers’ equation
ug + uu, = 0
2 for z <0
u(z,0) =< 1 for 0 <z <1
0 for =z > 1

Note that two shocks start at £ = 0, and eventually intersect to create a third shock.

Find the solution for all time (analytically), and graphically display your solution, labeling
all appropriate bounding curves.
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3.3 Second Order Wave Equation

In this section we show how the method of characteristics is applied to solve the second order
wave equation describing a vibrating string. The equation is

Uy — gy =0, ¢ = constant. (3.3.1)

For the rest of this chapter the unknown u(z,t) describes the displacement from rest of every
point x on the string at time . We have shown in section 2.3 that the general solution is

u(z,t) = F(x — ct) + G(x + ct). (3.3.2)
3.3.1 Infinite Domain
The problem is to find the solution of (3.3.1) subject to the initial conditions
u(z,0) = f(x) —00 < T <00 (3.3.1.1)

u(z,0) = g(z) —o00 <z < o0. (3.3.1.2)

These conditions will specify the arbitrary functions F,G. Combining the conditions with
(3.3.2), we have

F(@) +G(a) = (2) (3:3.13)
_C% v c% _ g(2). (3.3.1.4)

These are two equations for the two arbitrary functions F' and G. In order to solve the
system, we first integrate (3.3.1.4), thus

_F(z) + Glz) = %/Owg(f)dﬁ. (3.3.1.5)
Therefore, the solution of (3.3.1.3) and (3.3.1.5) is

F(o) = 5) — o [ o()de, (3316)

Glr) = /(@) + 5 NG (33.1.7)

Combining these expressions with (3.3.2), we have

u(z,t) =

flete) + fle—ct) 1 /’”*“ g(€)de. (3.3.1.8)

2 2_0 —ct

This is d’Alembert’s solution to (3.3.1) subject to (3.3.1.1)-(3.3.1.2).

Note that the solution u at a point (zg,tg) depends on f at the points (zq + ct,0) and
(xg — ctp,0), and on the values of g on the interval (zq — ¢ty , zo + ctp). This interval is called
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domain of dependence. In figure 20, we see that the domain of dependence is obtained by
drawing the two characteristics

T —ct =x9 — cty

T+ ct = xy + cty
through the point (x¢,ty). This behavior is to be expected because the effects of the initial
data propagate at the finite speed c. Thus the only part of the initial data that can influence

the solution at x( at time ¢y must be within cty units of zy. This is precisely the data given
in the interval (xg — cty,xo + ctp).

(X0t )

(Xo — ¢ty ,0) (Xo *+ Cty ,0)

I I I I
-4 -2 0 2 4 6 8

Figure 20: Domain of dependence

The functions f(z), g(x) describing the initial position and speed of the string are defined
for all x. The initial disturbance f(z) at a point z; will propagate at speed ¢ whereas the
effect of the initial velocity g(z) propagates at all speeds up to c¢. This infinite sector (figure
21) is called the domain of influence of x;.

The solution (3.3.2) represents a sum of two waves, one is travelling at a speed ¢ to the
right (F'(x — ct)) and the other is travelling to the left at the same speed.
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X =ct=X; X+Ct=X,

(%,,0)

Figure 21: Domain of influence
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Problems

1. Suppose that
u(z,t) = F(x — ct).

Evaluate
ou
& o (x,0)
ou
b. G_x(o’ t)

2. The general solution of the one dimensional wave equation
Ut — 4“1‘1‘ =0

is given by
u(z,t) = F(x — 2t) + G(x + 2t).

Find the solution subject to the initial conditions
u(z,0) = cosx — 00 < 1 < 00,

u(z,0) =0 —o00 <1 < o0.

3. In section 3.1, we suggest that the wave equation can be written as a system of two first
order PDEs. Show how to solve
Uy — gy = 0

using that idea.
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3.3.2 Semi-infinite String

The problem is to solve the one-dimensional wave equation
Uy — gy = 0, 0<z < o0, (3.3.2.1)
subject to the initial conditions
u(z,0) = f(x), 0 <z < oo, (3.3.2.2)
u(z,0) = g(z), 0 <z < oo, (3.3.2.3)
and the boundary condition
u(0,t) = h(t), 0<t. (3.3.2.4)

Note that f(x) and g(x) are defined only for nonnegative x. Therefore, the solution (3.3.1.8)
holds only if the arguments of f(z) are nonnegative, i.e.

r —ct

0
bt S0 (3.3.2.5)

AVAINY

As can be seen in figure 22, the first quadrant must be divided to two sectors by the charac-
teristic # — ¢t = 0. In the lower sector I, the solution (3.3.1.8) holds. In the other sector, one
should note that a characteristic + — ¢t = K will cross the negative x axis and the positive
t axis.

3L
Region II x-ct=0
2L
(X308 )
(%oto )
1 0.t = x; /c o0 Region |
0 X
(X, —ct; ,0) (Xo —Cty ,0) (Xo *Cty ,0)
-1k
2 . . . .
4 -2 0 2 4 6 8

Figure 22: The characteristic z — ¢t = 0 divides the first quadrant

The solution at point (1, ;) must depend on the boundary condition A(t). We will show
how the dependence presents itself.
For x — ¢t < 0, we proceed as follows:
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Combine (3.3.2.4) with the general solution (3.3.2) at x =0

h(t) = F(~ct) + G(ct) (3.3.2.6)

Since x — ¢t < 0 and since F is evaluated at this negative value, we use (3.3.2.6)

F(—ct) = h(t) — G(ct) (3.3.2.7)
Now let
z=—ct <0
then .
F(z) = h(—z) - G(-2). (3.3.2.8)

So F' for negative values is computed by (3.3.2.8) which requires G at positive values.
In particular, we can take x — ct as z, to get

r —ct

F(x —ct) = h(— ) — G(ct — x). (3.3.2.9)

C

Now combine (3.3.2.9) with the formula (3.3.1.7) for G
Flo—ct)=h(t—2) ~ (5rct—a)+ o [ olec)
TTa= c N T T, 0 g

The solution in sector II is then

T z+ct

ale, ) =h (6= 2) = Sfet—a) = o [T g+ sfw e+ o [T gle)de

f(x—|—ct)—;—f($—0t) +2ic/;:tg(§)d§ z—ct>0

u(z,t) =

_ _ 1 xr+ct
h(t— %) | flatd) : flet =) +%/Ct_x g(€)dE T —ct <0
(3.3.2.10)

Note that the solution in sector II requires the knowledge of f(x) at point B (see Figure
23) which is the image of A about the ¢ axis. The line BD is a characteristic (parallel
to PC)

T +ct =K.

Therefore the solution at (x1,¢;) is a combination of a wave moving on the characteristic
CP and one moving on BD and reflected by the wall at x = 0 to arrive at P along a
characteristic

T —ct =x1 — cty.
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Region Il x-ct=0

P(x; .ty )

1F D(0,t; — x, /c) Region |

A(x; —ct; ,0) B(ct; -x;,0)  C(x, +ct; ,0)

-1+

% =2 0 2 4 6 8
Figure 23: The solution at P
We now introduce several definitions to help us show that d’Alembert’s solution (3.3.1.8)

holds in other cases.
Definition 8. A function f(z) is called an even function if

f(=z) = f(x)
Definition 9. A function f(z) is called an odd function if
f(=z) = =f ()
Note that some functions are neither.

Examples
1. f(x) = 2?% is an even function.
2. f(z) = 2% is an odd function.
3. f(z) = x — 2% is neither odd nor even.

Definition 10. A function f(z) is called a periodic function of period p if

flx+p) = f(x) for all z.

The smallest such real number p is called the fundamental period.
Remark: If the boundary condition (3.3.2.4) is

u(0,t) =0,

then the solution for the semi-infinite interval is the same as that for the infinite interval

with f(z) and g(x) being extended as odd functions for x < 0. Since if f and g are odd
functions then ) )
—2) = —f(z

’ 3.3.2.11

g(—2) = —gl2). (3:3.2.11)
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The solution for x — ¢t is now

u(w,t) = L@ = ;(—(x —) | i (/:Ig(g)df + /(JHCtg(g)dg) . (3.32.12)

But if we let ( = —& then

[ s@re= [ g-0)-aq)

t—x

= [ o= [ g(©c.

—ct r—ct

Now combine this integral with the last term in (3.3.2.12) to have

u(z,t) =

flx+ct)+ f(z —ct) N 1 /Hdg(g)dg

2 2

—ct

which is exactly the same formula as for x —ct > 0. Therefore we have shown that for a semi-
infinite string with fixed ends, one can use d’Alembert’s solution (3.3.1.8) after extending
f(z) and g(z) as odd functions for z < 0.

What happens if the boundary condition is

u.(0,t) = 07

We claim that one has to extend f(x), g(x) as even functions and then use (3.3.1.8). The
details will be given in the next section.

3.3.3 Semi Infinite String with a Free End

In this section we show how to solve the wave equation

Uy — Cllgy = 0, 0<z< o0, (3.3.3.1)
subject to
u(z,0) = f(x), (3.3.3.2)
u(z,0) = g(z), (3.3.3.3)
uz(0,1) = 0. (3.3.3.4)

Clearly, the general solution for z — ¢t > 0 is the same as before, i.e. given by (3.3.1.8). For
x — ct < 0, we proceed in a similar fashion as last section. Using the boundary condition
(3.3.3.4)

dF (z — ct) +dG(x + ct)

0=u.(0,t) = o B o B

= F'(—ct) + G'(ct).

Therefore
F’(—ct) = —G'(ct). (3.3.3.5)
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Let z = —ct < 0 and integrate over [0, z]

Replacing z by x — ¢t < 0, we have
F(z —ct) = G(—(x — ct)),

or

Flo—ct)= S fe—a)+5 [ gle)de

c
To summarize, the solution is

flz+ct) + f(x — ct) N 1 /:v+ctg(§)d§ e
2c r—ct ’ -

flx+ct) + f(
2

u(z,t) =

Remark: If f(z) and g(z) are extended for < 0 as even functions then

flet =) = f(=(z = ct)) = f(z — 1)

and

[ a@de= [ 000 = [ a(c

—ct

where ( = —¢.
Thus the integrals can be combined to one to give

ARG

2c —ct

— 1 T+ct 1 ct—zx
T [ e+ o [T s, 2 <

(3.3.3.6)

(3.3.3.7)

(3.3.3.8)

(3.3.3.9)

Therefore with this extension of f(z) and ¢g(z) we can write the solution in the form (3.3.1.8).
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Problems

1. Solve by the method of characteristics

*u  ,0%u

ﬁ — C w = 0, x>0
subject to
u(z,0) =0,
ou
—(z,0) =0
ot (z,0) =0,
u(0,t) = h(t).
2. Solve 5 52
u 5071
ﬁ — C w = 0, z <0
subject to
u(z,0) =sinz, r<0
0
a—?(x,O) —0, <0
u(0,t) = e, t>0.
3. a. Solve o2 2
u S 0%u
w —C ﬁ = 0, O0<z <0
subject to
0 0<x<?2
u(z,0)=¢ 1 2<x<3
0 3<zx
ou
—(z,0) =0
o (#0) =0,
ou
—(0,1) =0
~2(0,1)
b. Suppose u is continuous at x =t = 0, sketch the solution at various times.
4. Solve 52 5
v ,0%u
ﬁ—C@:O, $>O, t>0
subject to
u(z,0) =0,
ou
—(z,0) =0
ot (,0) =0,
ou
—(0,t) = h(?).
~2(0.0) = bt

5. Give the domain of influence in the case of semi-infinite string.
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3.3.4 Finite String

This problem is more complicated because of multiple reflections. Consider the vibrations

of a string of length L,

Uy — gy = 0, 0<z<L,
subject t